Math 55 Discussion problems 16 Feb

1. Show that if $a c \equiv b c(\bmod m)$, where a, b, c, and m are integers with $m>2$, and $d=$ $\operatorname{gcd}(m, c)$, then $a \equiv b\left(\bmod \frac{m}{d}\right)$.
2. Show that an inverse of a modulo m, where a is an integer and $m>2$ is a positive integer, does not exist if $\operatorname{gcd}(a, m)>1$.
3. Solve each of these congruences.
(a) $34 x \equiv 77(\bmod 89)$
(b) $144 x \equiv 4(\bmod 233)$
(c) $200 x \equiv 13(\bmod 1001)$
4. Find all solutions to the system of congruences $\left\{\begin{array}{l}x \equiv 2(\bmod 3) \\ x \equiv 1(\bmod 4) \\ x \equiv 3(\bmod 5)\end{array}\right.$
5. Solve the system of congruence $\left\{\begin{array}{l}x \equiv 3(\bmod 6) \\ x \equiv 4(\bmod 7)\end{array}\right.$
6. Find all solutions, if any, to the system of congruences $\left\{\begin{array}{l}x \equiv 5(\bmod 6) \\ x \equiv 3(\bmod 10) \\ x \equiv 8(\bmod 15)\end{array}\right.$
7. Show that the system of congruences $\left\{\begin{array}{l}x \equiv 2(\bmod 6) \\ x \equiv 3(\bmod 9)\end{array}\right.$ has no solutions.
8. Use Fermat's little theorem to find $23^{1002} \bmod 41$.
